Search results
Results from the WOW.Com Content Network
This type of micelle is known as a normal-phase micelle (or oil-in-water micelle). Inverse micelles have the head groups at the centre with the tails extending out (or water-in-oil micelle). Micelles are approximately spherical in shape. Other shapes, such as ellipsoids, cylinders, and bilayers, are also possible.
Schematic diagram of a micelle – the lipophilic tails of the surfactant ions remain inside the oil because they interact more strongly with oil than with water. The polar "heads" of the surfactant molecules coating the micelle interact more strongly with water, so they form a hydrophilic outer layer that forms a barrier between micelles. This ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The three main structures phospholipids form in solution; the liposome (a closed bilayer), the micelle and the bilayer. [1] The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cells.
Bicelles are a related class of model membrane, [57] typically made of two lipids, one of which forms a lipid bilayer while the other forms an amphipathic, micelle-like assembly shielding the bilayer center from surrounding solvent molecules. Bicelles can be thought of as a segment of bilayer encapsulated and solubilized by a micelle.
Schematic of a micellar solution showing spherical micelles distributed in water (solvent) and having no long-range positional order. In colloid science, a micellar solution consists of a dispersion of micelles (small particles) in a solvent (most usually water).
Diagram showing the effect of unsaturated lipids on a bilayer. The lipids with an unsaturated tail (blue) disrupt the packing of those with only saturated tails (black). The resulting bilayer has more free space and is consequently more permeable to water and other small molecules.
The amphiphiles' hydrocarbon tails are contained on the inside of the micelle and hence the polar-apolar interface of the aggregates has a positive mean curvature, by definition (it curves away from the polar phase). The first pure surfactant system found to exhibit three different type I (oil-in-water) micellar cubic phases was observed in the ...