Search results
Results from the WOW.Com Content Network
The table above gives properties of the vapor–liquid equilibrium of anhydrous ammonia at various temperatures. The second column is vapor pressure in kPa. The third column is the density of the liquid phase. The fourth column is the density of the vapor. The fifth column is the heat of vaporization needed to convert one gram of liquid to vapor.
A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseous states) occur and coexist at equilibrium.
A typical phase diagram.The solid green line applies to most substances; the dashed green line gives the anomalous behavior of water. In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium. [1]
Ammonia forms 1:1 adducts with a variety of Lewis acids such as I 2, phenol, and Al(CH 3) 3. Ammonia is a hard base (HSAB theory) and its E & C parameters are E B = 2.31 and C B = 2.04. Its relative donor strength toward a series of acids, versus other Lewis bases, can be illustrated by C-B plots.
Boiling-point diagram. The preceding equilibrium equations are typically applied for each phase (liquid or vapor) individually, but the result can be plotted in a single diagram. In a binary boiling-point diagram, temperature (T ) (or sometimes pressure) is graphed vs. x 1. At any given temperature (or pressure) where both phases are present ...
A plot of typical polymer solution phase behavior including two critical points: a LCST and an UCST. The liquid–liquid critical point of a solution, which occurs at the critical solution temperature, occurs at the limit of the two-phase region of the phase diagram. In other words, it is the point at which an infinitesimal change in some ...
Carbon dioxide density-pressure phase diagram. Figures 1 and 2 show two-dimensional projections of a phase diagram. In the pressure-temperature phase diagram (Fig. 1) the boiling curve separates the gas and liquid region and ends in the critical point, where the liquid and gas phases disappear to become a single supercritical phase.
A schematic diagram of chemical ionization source. Chemical ionization (CI) is a soft ionization technique used in mass spectrometry. [1] [2] This was first introduced by Burnaby Munson and Frank H. Field in 1966. [3] This technique is a branch of gaseous ion-molecule chemistry. [2]