Search results
Results from the WOW.Com Content Network
fps 2: ≡ 1 ft/s 2 = 3.048 × 10 −1 m/s 2: gal; galileo: Gal ≡ 1 cm/s 2 = 10 −2 m/s 2: inch per minute per second: ipm/s ≡ 1 in/(min⋅s) = 4.2 3 × 10 −4 m/s 2: inch per second squared: ips 2: ≡ 1 in/s 2 = 2.54 × 10 −2 m/s 2: knot per second: kn/s ≡ 1 kn/s ≈ 5.1 4 × 10 −1 m/s 2: metre per second squared (SI unit) m/s 2 ...
Mass flow rate is defined by the limit [3] [4] ˙ = =, i.e., the flow of mass through a surface per time .. The overdot on ˙ is Newton's notation for a time derivative.Since mass is a scalar quantity, the mass flow rate (the time derivative of mass) is also a scalar quantity.
Its symbol is written in several forms as m/s 2, m·s −2 or ms −2, , or less commonly, as (m/s)/s. [ 1 ] As acceleration, the unit is interpreted physically as change in velocity or speed per time interval, i.e. metre per second per second and is treated as a vector quantity.
Volumetric flow rate should not be confused with volumetric flux, as defined by Darcy's law and represented by the symbol q, with units of m 3 /(m 2 ·s), that is, m·s −1. The integration of a flux over an area gives the volumetric flow rate. The SI unit is cubic metres per second (m 3 /s). Another unit used is standard cubic centimetres per ...
[2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²).
Chvorinov's rule is a physical relationship that relates the solidification time for a simple casting to the volume and surface area of the casting. It was first expressed by Czech engineer Nicolas Chvorinov in 1940. [1] [2]
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
Given two bodies, one with mass m 1 and the other with mass m 2, the equivalent one-body problem, with the position of one body with respect to the other as the unknown, is that of a single body of mass [1] [2] = = + = +, where the force on this mass is given by the force between the two bodies.