Search results
Results from the WOW.Com Content Network
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line {}, which consists of the real numbers and .
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Set theory is the branch of mathematical logic ... The latter was a starting point a movement in real analysis for the study of “seriously” discontinuous functions.
In set theory, a continuous function is a sequence of ordinals such that the values assumed at limit stages are the limits (limit suprema and limit infima) of all values at previous stages. More formally, let γ be an ordinal, and s := s α | α < γ {\displaystyle s:=\langle s_{\alpha }|\alpha <\gamma \rangle } be a γ -sequence of ordinals.
The smallest such set is denoted by N, and its members are called natural numbers. [2] The successor function is the level-0 foundation of the infinite Grzegorczyk hierarchy of hyperoperations, used to build addition, multiplication, exponentiation, tetration, etc. It was studied in 1986 in an investigation involving generalization of the ...
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.
In set theory, the definition of a function does not require specifying the domain or codomain of the function (see Function (set theory)). NBG's definition of function generalizes ZFC's definition from a set of ordered pairs to a class of ordered pairs.