Search results
Results from the WOW.Com Content Network
Database with 1,025 species, 13,500+ images, and 120,000+ characteristics Varying size and background. Labeled by PhD botanist. 13,500 Images, text Classification 1999-2024 [319] Richard Old CottonWeedDet3 Dataset A 3-class weed detection dataset for cotton cropping systems 3 species of weeds. 848 Images Classification 2022 [320] Rahman et al.
Images Classification 2009 [18] [36] A. Krizhevsky et al. CIFAR-100 Dataset Like CIFAR-10, above, but 100 classes of objects are given. Classes labelled, training set splits created. 60,000 Images Classification 2009 [18] [36] A. Krizhevsky et al. CINIC-10 Dataset A unified contribution of CIFAR-10 and Imagenet with 10 classes, and 3 splits.
CIFAR-10 is a set of images that can be used to teach a computer how to recognize objects. Since the images in CIFAR-10 are low-resolution (32x32), this dataset can allow researchers to quickly try different algorithms to see what works. CIFAR-10 is a labeled subset of the 80 Million Tiny Images dataset from 2008, published in 2009. When the ...
SqueezeNet is a deep neural network for image classification released in 2016. SqueezeNet was developed by researchers at DeepScale , University of California, Berkeley , and Stanford University . In designing SqueezeNet, the authors' goal was to create a smaller neural network with fewer parameters while achieving competitive accuracy.
Examples of algorithms for this task include New Edge-Directed Interpolation (NEDI), [1] [2] Edge-Guided Image Interpolation (EGGI), [3] Iterative Curvature-Based Interpolation (ICBI), [citation needed] and Directional Cubic Convolution Interpolation (DCCI). [4] A study found that DCCI had the best scores in PSNR and SSIM on a series of test ...
The LightGBM algorithm utilizes two novel techniques called Gradient-Based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) which allow the algorithm to run faster while maintaining a high level of accuracy. [13] LightGBM works on Linux, Windows, and macOS and supports C++, Python, [14] R, and C#. [15]
As the image illustrated below, if only a small portion of the image is shown, it is very difficult to tell what the image is about. Mouth. Even try another portion of the image, it is still difficult to classify the image. Left eye. However, if we increase the contextual of the image, then it makes more sense to recognize. Increased field of ...
The ImageNet project is a large visual database designed for use in visual object recognition software research. More than 14 million [1] [2] images have been hand-annotated by the project to indicate what objects are pictured and in at least one million of the images, bounding boxes are also provided. [3]