Search results
Results from the WOW.Com Content Network
On the other hand, some compounds that are normally written with ionic bonds in order to conform to the octet rule, such as ozone O 3, nitrous oxide NNO, and trimethylamine N-oxide (CH 3) 3 NO, are found to be genuinely hypervalent. Examples of γ calculations for phosphate PO 3− 4 (γ(P) = 2.6, non-hypervalent) and orthonitrate NO 3−
The octet rule is a chemical rule of thumb that reflects the theory that main-group elements tend to bond in such a way that each atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas. The rule is especially applicable to carbon, nitrogen, oxygen, and the halogens; although more generally the ...
Here [Ne] refers to the core electrons which are the same as for the element neon (Ne), the last noble gas before phosphorus in the periodic table. The valence electrons (here 3s 2 3p 3) are written explicitly for all atoms. Electron configurations of elements beyond hassium (element 108) have never been measured; predictions are used below.
[7] [8] While Lewis supported the viewpoint of expanded octet, invoking s-p-d hybridized orbitals and maintaining 2c–2e bonds between neighboring atoms, Langmuir instead opted for maintaining the octet rule, invoking an ionic basis for bonding in hypervalent compounds (see Hypervalent molecule, valence bond theory diagrams for PF 5 and SF 6). [9]
These iodine compounds are hypervalent because the iodine atom formally contains in its valence shell more than the 8 electrons required for the octet rule. Hypervalent iodine oxyanions are known for oxidation states +1, +3, +5, and +7; organic analogues of these moieties are known for each oxidation state except +7.
It is used for classifying compounds and for explaining or predicting their electronic structure and bonding. [1] Many rules in chemistry rely on electron-counting: Octet rule is used with Lewis structures for main group elements, especially the lighter ones such as carbon, nitrogen, and oxygen,
The following are subcategories containing chemical compounds by element. An alternative listing of inorganic compounds may be found at inorganic compounds by element . Wikimedia Commons has media related to Chemical compounds by element .
A trick is to count up valence electrons, then count up the number of electrons needed to complete the octet rule (or with hydrogen just 2 electrons), then take the difference of these two numbers. The answer is the number of electrons that make up the bonds. The rest of the electrons just go to fill all the other atoms' octets.