enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]

  3. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    In this theory, the class P consists of all decision problems (defined below) solvable on a deterministic sequential machine in a duration polynomial in the size of the input; the class NP consists of all decision problems whose positive solutions are verifiable in polynomial time given the right information, or equivalently, whose solution can ...

  4. Hasse principle - Wikipedia

    en.wikipedia.org/wiki/Hasse_principle

    Given a polynomial equation with rational coefficients, if it has a rational solution, then this also yields a real solution and a p-adic solution, as the rationals embed in the reals and p-adics: a global solution yields local solutions at each prime.

  5. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    These solutions can easily be checked by substitution, but more work is needed for proving that there are no other solutions. The subject of this article is the study of generalizations of such an examples, and the description of the methods that are used for computing the solutions. A system of polynomial equations, or polynomial system is a ...

  6. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and ...

  7. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    The Bunyakovsky conjecture generalizes Dirichlet's theorem to higher-degree polynomials. Whether or not even simple quadratic polynomials such as x 2 + 1 (known from Landau's fourth problem) attain infinitely many prime values is an important open problem. Dickson's conjecture generalizes Dirichlet's theorem to more than one polynomial.

  8. Mason–Stothers theorem - Wikipedia

    en.wikipedia.org/wiki/Mason–Stothers_theorem

    A corollary of the Mason–Stothers theorem is the analog of Fermat's Last Theorem for function fields: if a(t) n + b(t) n = c(t) n for a, b, c relatively prime polynomials over a field of characteristic not dividing n and n > 2 then either at least one of a, b, or c is 0 or they are all constant.

  9. Hensel's lemma - Wikipedia

    en.wikipedia.org/wiki/Hensel's_lemma

    Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form , where p is a prime number).