enow.com Web Search

  1. Ad

    related to: examples of prime polynomial functions with answers

Search results

  1. Results from the WOW.Com Content Network
  2. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    But the only way (+) = = for all k is if the polynomial function is constant. The same reasoning shows an even stronger result: no non-constant polynomial function P(n) exists that evaluates to a prime number for almost all integers n. Euler first noticed (in 1772) that the quadratic polynomial

  3. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    The Bunyakovsky conjecture generalizes Dirichlet's theorem to higher-degree polynomials. Whether or not even simple quadratic polynomials such as x 2 + 1 (known from Landau's fourth problem) attain infinitely many prime values is an important open problem. Dickson's conjecture generalizes Dirichlet's theorem to more than one polynomial.

  4. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    An answer to the P versus NP question would determine whether problems that can be verified in polynomial time can also be solved in polynomial time. If P ≠ NP, which is widely believed, it would mean that there are problems in NP that are harder to compute than to verify: they could not be solved in polynomial time, but the answer could be ...

  5. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    Fermat's theorem on sums of two squares is strongly related with the theory of Gaussian primes.. A Gaussian integer is a complex number + such that a and b are integers. The norm (+) = + of a Gaussian integer is an integer equal to the square of the absolute value of the Gaussian integer.

  6. Bunyakovsky conjecture - Wikipedia

    en.wikipedia.org/wiki/Bunyakovsky_conjecture

    A seemingly weaker yet equivalent statement to Bunyakovsky's conjecture is that for every integer polynomial () that satisfies (1)–(3), () is prime for at least one positive integer : but then, since the translated polynomial (+) still satisfies (1)–(3), in view of the weaker statement () is prime for at least one positive integer >, so ...

  7. Mason–Stothers theorem - Wikipedia

    en.wikipedia.org/wiki/Mason–Stothers_theorem

    A corollary of the Mason–Stothers theorem is the analog of Fermat's Last Theorem for function fields: if a(t) n + b(t) n = c(t) n for a, b, c relatively prime polynomials over a field of characteristic not dividing n and n > 2 then either at least one of a, b, or c is 0 or they are all constant.

  8. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    All prime numbers from 31 to 6,469,693,189 for free download. Lists of Primes at the Prime Pages. The Nth Prime Page Nth prime through n=10^12, pi(x) through x=3*10^13, Random primes in same range. Interface to a list of the first 98 million primes (primes less than 2,000,000,000) Weisstein, Eric W. "Prime Number Sequences". MathWorld.

  9. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and ...

  1. Ad

    related to: examples of prime polynomial functions with answers