enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/Cauchy–Schwarz_inequality

    Cauchy–Schwarz inequality (Modified Schwarz inequality for 2-positive maps [27]) — For a 2-positive map between C*-algebras, for all , in its domain, () ‖ ‖ (), ‖ ‖ ‖ ‖ ‖ ‖. Another generalization is a refinement obtained by interpolating between both sides of the Cauchy–Schwarz inequality:

  3. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  4. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The equations 3x + 2y = 6 and 3x + 2y = 12 are inconsistent. A linear system is inconsistent if it has no solution, and otherwise, it is said to be consistent. [7] When the system is inconsistent, it is possible to derive a contradiction from the equations, that may always be rewritten as the statement 0 = 1. For example, the equations

  5. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    One particular solution is x = 0, y = 0, z = 0. Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates, and this plane is the set of all points whose coordinates are solutions of the equation.

  6. Tridiagonal matrix algorithm - Wikipedia

    en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Indeed, multiplying each equation of the second auxiliary system by , adding with the corresponding equation of the first auxiliary system and using the representation = +, we immediately see that equations number 2 through n of the original system are satisfied; it only remains to satisfy equation number 1.

  7. Subadditivity - Wikipedia

    en.wikipedia.org/wiki/Subadditivity

    An example is the square root function, having the non-negative real numbers as domain and codomain: since , we have: + +. A sequence { a n } n ≥ 1 {\displaystyle \left\{a_{n}\right\}_{n\geq 1}} is called subadditive if it satisfies the inequality a n + m ≤ a n + a m {\displaystyle a_{n+m}\leq a_{n}+a_{m}} for all m and n .

  8. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]

  9. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    In two dimensions, 2x 1 + 2x 2 is the perimeter of a rectangle with sides of length x 1 and x 2. Similarly, 4x 1 x 2 is the perimeter of a square with the same area, x 1 x 2, as that rectangle. Thus for n = 2 the AM–GM inequality states that a rectangle of a given area has the smallest perimeter if that rectangle is also a square.