enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  4. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    Now its Taylor series centered at z 0 converges on any disc B(z 0, r) with r < |z − z 0 |, where the same Taylor series converges at z ∈ C. Therefore, Taylor series of f centered at 0 converges on B(0, 1) and it does not converge for any z ∈ C with |z| > 1 due to the poles at i and −i.

  5. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size.. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations.

  6. Delta method - Wikipedia

    en.wikipedia.org/wiki/Delta_method

    When g is applied to a random variable such as the mean, the delta method would tend to work better as the sample size increases, since it would help reduce the variance, and thus the taylor approximation would be applied to a smaller range of the function g at the point of interest.

  7. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    In mathematics, Itô's lemma or Itô's formula is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process.It serves as the stochastic calculus counterpart of the chain rule.

  8. Shift operator - Wikipedia

    en.wikipedia.org/wiki/Shift_operator

    which may be interpreted operationally through its formal Taylor expansion in t; and whose action on the monomial x n is evident by the binomial theorem, and hence on all series in x, and so all functions f(x) as above. [3] This, then, is a formal encoding of the Taylor expansion in Heaviside's calculus.

  9. Multi-index notation - Wikipedia

    en.wikipedia.org/wiki/Multi-index_notation

    In fact, for a smooth enough function, we have the similar Taylor expansion (+) = ...

  1. Related searches taylor expansion in matlab meaning of word document free microsoft office

    taylor expansion of functiontaylor expansion probability