enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]

  3. List of numerical libraries - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_libraries

    Dlib is a modern C++ library with easy to use linear algebra and optimization tools which benefit from optimized BLAS and LAPACK libraries. Eigen is a vector mathematics library with performance comparable with Intel's Math Kernel Library; Hermes Project: C++/Python library for rapid prototyping of space- and space-time adaptive hp-FEM solvers.

  4. Machine epsilon - Wikipedia

    en.wikipedia.org/wiki/Machine_epsilon

    This alternative definition is significantly more widespread: machine epsilon is the difference between 1 and the next larger floating point number.This definition is used in language constants in Ada, C, C++, Fortran, MATLAB, Mathematica, Octave, Pascal, Python and Rust etc., and defined in textbooks like «Numerical Recipes» by Press et al.

  5. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    As a power of ten, the scaling factor is then indicated separately at the end of the number. For example, the orbital period of Jupiter's moon Io is 152,853.5047 seconds, a value that would be represented in standard-form scientific notation as 1.528535047 × 10 5 seconds. Floating-point representation is similar in concept to scientific notation.

  6. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    5 / 3 1.6667: 4 decimal places: Approximating a fractional decimal number by one with fewer digits 2.1784: 2.18 2 decimal places Approximating a decimal integer by an integer with more trailing zeros 23217: 23200: 3 significant figures Approximating a large decimal integer using scientific notation: 300999999: 3.01 × 10 8: 3 significant figures

  7. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    Converting a number from scientific notation to decimal notation, first remove the × 10 n on the end, then shift the decimal separator n digits to the right (positive n) or left (negative n). The number 1.2304 × 10 6 would have its decimal separator shifted 6 digits to the right and become 1,230,400 , while −4.0321 × 10 −3 would have its ...

  8. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    In computing, half precision (sometimes called FP16 or float16) is a binary floating-point computer number format that occupies 16 bits (two bytes in modern computers) in computer memory. It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks .

  9. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point.