enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torricelli's equation - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_equation

    In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where

  3. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Settling velocity W s of a sand grain (diameter d, density 2650 kg/m 3) in water at 20 °C, computed with the formula of Soulsby (1997). When the buoyancy effects are taken into account, an object falling through a fluid under its own weight can reach a terminal velocity (settling velocity) if the net force acting on the object becomes zero.

  4. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The equations ignore air resistance, which has a dramatic effect on objects falling an appreciable distance in air, causing them to quickly approach a terminal velocity. The effect of air resistance varies enormously depending on the size and geometry of the falling object—for example, the equations are hopelessly wrong for a feather, which ...

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Equation [3] involves the average velocity ⁠ v + v 0 / 2 ⁠. Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...

  6. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    Alternatively the final velocity of a particle, v 2 (v A2 or v B2) is expressed by: = (+) Where: e is the coefficient of restitution. v CoM is the velocity of the center of mass of the system of two particles: = + +

  7. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Then, the velocity of object A relative to object B is defined as the difference of the two velocity vectors: = Similarly, the relative velocity of object B moving with velocity w, relative to object A moving with velocity v is: = Usually, the inertial frame chosen is that in which the latter of the two mentioned objects is in rest.

  8. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum. In the International System of Units, these are kg⋅m/s = N⋅s. In English engineering units, they are slug⋅ft/s = lbf⋅s.

  9. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...