enow.com Web Search

  1. Ad

    related to: fixed point theorem statement calculator calculus 2 formulas pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorem

    The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...

  3. Fixed point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fixed_point_(mathematics)

    The function () = + (shown in red) has the fixed points 0, 1, and 2. In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation. Specifically, for functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed ...

  4. Initial value problem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_problem

    The integral can be considered an operator which maps one function into another, such that the solution is a fixed point of the operator. The Banach fixed point theorem is then invoked to show that there exists a unique fixed point, which is the solution of the initial value problem. An older proof of the Picard–Lindelöf theorem constructs a ...

  5. Fixed-point iteration - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_iteration

    In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .

  6. Banach fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Banach_fixed-point_theorem

    In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces and provides a constructive method to find those fixed points.

  7. Diagonal lemma - Wikipedia

    en.wikipedia.org/wiki/Diagonal_lemma

    The terms "diagonal lemma" or "fixed point" do not appear in Kurt Gödel's 1931 article or in Alfred Tarski's 1936 article. Rudolf Carnap (1934) was the first to prove the general self-referential lemma , [ 6 ] which says that for any formula F in a theory T satisfying certain conditions, there exists a formula ψ such that ψ ↔ F (°#( ψ ...

  8. Fixed-point theorems in infinite-dimensional spaces - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorems_in...

    Schauder fixed-point theorem: Let C be a nonempty closed convex subset of a Banach space V. If f : C → C is continuous with a compact image, then f has a fixed point. Tikhonov (Tychonoff) fixed-point theorem: Let V be a locally convex topological vector space. For any nonempty compact convex set X in V, any continuous function f : X → X has ...

  9. Fixed-point computation - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_computation

    In its most common form, the given function satisfies the condition to the Brouwer fixed-point theorem: that is, is continuous and maps the unit d-cube to itself. The Brouwer fixed-point theorem guarantees that has a fixed point, but the proof is not constructive. Various algorithms have been devised for computing an approximate fixed point.

  1. Ad

    related to: fixed point theorem statement calculator calculus 2 formulas pdf