Search results
Results from the WOW.Com Content Network
The work done is given by the dot product of the two vectors, where the result is a scalar. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by: = If the force is variable, then work is given by the line integral:
For conservative forces, path independence can be interpreted to mean that the work done in going from a point to a point is independent of the moving path chosen (dependent on only the points and ), and that the work done in going around a simple closed loop is :
Work is dependent on the displacement as well as the force acting on an object. As a particle moves through a force field along a path C, the work done by the force is a line integral: = This value is independent of the velocity /momentum that the particle travels along the path.
For a proof, imagine two paths 1 and 2, both going from point A to point B. The variation of energy for the particle, taking path 1 from A to B and then path 2 backwards from B to A, is 0; thus, the work is the same in path 1 and 2, i.e., the work is independent of the path followed, as long as it goes from A to B.
The unit circle on the left shows the rotation of the unit vectors with s. Local coordinates mean a set of coordinates that travel with the particle, [25] and have orientation determined by the path of the particle. [26] Unit vectors are formed as shown in the image at right, both tangential and normal to the path.
The work per unit of charge is defined as the movement of negligible test charge between two points, and is expressed as the difference in electric potential at those points. The work can be done, for example, by electrochemical devices (electrochemical cells) or different metals junctions [clarification needed] generating an electromotive force.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
If a force acts on a particle as it moves from point to point , then, for each possible trajectory that the particle may take, it is possible to compute the total work done by the force along the path. The principle of virtual work, which is the form of the principle of least action applied to these systems, states that the path actually ...