Search results
Results from the WOW.Com Content Network
An application of the above formula for the square of a binomial is the "(m, n)-formula" for generating Pythagorean triples: For m < n, let a = n 2 − m 2, b = 2mn, and c = n 2 + m 2; then a 2 + b 2 = c 2. Binomials that are sums or differences of cubes can be factored into smaller-degree polynomials as follows:
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
As conventionally taught, completing the square consists of adding the third term, v 2 to + to get a square. There are also cases in which one can add the middle term, either 2 uv or −2 uv , to u 2 + v 2 {\displaystyle u^{2}+v^{2}} to get a square.
For example, antiderivatives of x 2 + 1 have the form 1 / 3 x 3 + x + c. For polynomials whose coefficients come from more abstract settings (for example, if the coefficients are integers modulo some prime number p , or elements of an arbitrary ring), the formula for the derivative can still be interpreted formally, with the coefficient ...
The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.
In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...
Above, the resulting (+) in the second line is evaluated by the second application of the binomial expansion, introducing another summation over the index . The product of the two binomial coefficients is simplified by shortening r ! {\displaystyle r!} ,
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.