Search results
Results from the WOW.Com Content Network
The VIF provides an index that measures how much the variance (the square of the estimate's standard deviation) of an estimated regression coefficient is increased because of collinearity. Cuthbert Daniel claims to have invented the concept behind the variance inflation factor, but did not come up with the name. [2]
Variance inflation factor, a measure of collinearity in statistical regression models; Visual information fidelity, measure for image quality assessment; Value of in-force, a life insurance term "Virtual Interface", a networking term; Viral infectivity factor of retroviruses, specifically used in the context of HIV "Vector Unit InterFace" on ...
Variance inflation factors are often misused as criteria in stepwise regression (i.e. for variable inclusion/exclusion), a use that "lacks any logical basis but also is fundamentally misleading as a rule-of-thumb". [2]
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
Kish's original definition compared the variance under some sampling design to the variance achieved through a simple random sample. Some literature provide the following alternative definition for Kish's design effect: "the ratio of the variance of the weighted survey mean under disproportionate stratified sampling to the variance under ...
As the examples above show, zero-inflated data can arise as a mixture of two distributions. The first distribution generates zeros. The second distribution, which may be a Poisson distribution, a negative binomial distribution or other count distribution, generates counts, some of which may be zeros.
It can also happen if there is too little data available compared to the number of parameters to be estimated (e.g., fewer data points than regression coefficients). Near violations of this assumption, where predictors are highly but not perfectly correlated, can reduce the precision of parameter estimates (see Variance inflation factor).
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.