enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Seasonal subseries plot - Wikipedia

    en.wikipedia.org/wiki/Seasonal_subseries_plot

    Seasonal sub-series plots are formed by [3] Vertical axis: response variable; Horizontal axis: time of year; for example, with monthly data, all the January values are plotted (in chronological order), then all the February values, and so on. The horizontal line displays the mean value for each month over the time series.

  3. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    In time series analysis, the Box–Jenkins method, [1] named after the statisticians George Box and Gwilym Jenkins, applies autoregressive moving average (ARMA) or autoregressive integrated moving average (ARIMA) models to find the best fit of a time-series model to past values of a time series.

  4. X-13ARIMA-SEATS - Wikipedia

    en.wikipedia.org/wiki/X-13ARIMA-SEATS

    X-13ARIMA-SEATS, successor to X-12-ARIMA and X-11, is a set of statistical methods for seasonal adjustment and other descriptive analysis of time series data that are implemented in the U.S. Census Bureau's software package. [3]

  5. Decomposition of time series - Wikipedia

    en.wikipedia.org/wiki/Decomposition_of_time_series

    An example of statistical software for this type of decomposition is the program BV4.1 that is based on the Berlin procedure.The R statistical software also includes many packages for time series decomposition, such as seasonal, [7] stl, stlplus, [8] and bfast.

  6. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.

  7. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    In the statistical analysis of time series, autoregressive–moving-average (ARMA) models are a way to describe a (weakly) stationary stochastic process using autoregression (AR) and a moving average (MA), each with a polynomial. They are a tool for understanding a series and predicting future values.

  8. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    Python: the "statsmodels" package includes models for time series analysis – univariate time series analysis: AR, ARIMA – vector autoregressive models, VAR and structural VAR – descriptive statistics and process models for time series analysis. R: the standard R stats package includes an arima function, which is documented in "ARIMA ...

  9. Time series database - Wikipedia

    en.wikipedia.org/wiki/Time_series_database

    A time series database is a software system that is optimized for storing and serving time series through associated pairs of time(s) and value(s). [1] In some fields, time series may be called profiles, curves, traces or trends. [ 2 ]