Search results
Results from the WOW.Com Content Network
During the early development of electrochemistry, researchers used the normal hydrogen electrode as their standard for zero potential. This was convenient because it could actually be constructed by "[immersing] a platinum electrode into a solution of 1 N strong acid and [bubbling] hydrogen gas through the solution at about 1 atm pressure".
A reference electrode is an electrode that has a stable and well-known electrode potential. The overall chemical reaction taking place in a cell is made up of two independent half-reactions , which describe chemical changes at the two electrodes.
Latimer diagrams can be used in the construction of Frost diagrams, as a concise summary of the standard electrode potentials relative to the element. Since Δ r G o = -n F E o , the electrode potential is a representation of the Gibbs energy change for the given reduction.
The standard hydrogen electrode (SHE), with [ H +] = 1 M works thus at a pH = 0. At pH = 7, when [ H +] = 10 −7 M, the reduction potential of H + differs from zero because it depends on pH. Solving the Nernst equation for the half-reaction of reduction of two protons into hydrogen gas gives: 2 H + + 2 e − ⇌ H 2
Bipolar electrochemistry scheme. In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound.The IUPAC "Gold Book" defines it as; "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".
In electrochemistry, electrode potential is the voltage of a galvanic cell built from a standard reference electrode and another electrode to be characterized. [1] By convention, the reference electrode is the standard hydrogen electrode (SHE). It is defined to have a potential of zero volts. It may also be defined as the potential difference ...
A reversible hydrogen electrode (RHE) is a reference electrode, more specifically a subtype of the standard hydrogen electrodes, for electrochemical processes. Unlike the standard hydrogen electrode, its measured potential does change with the pH, so it can be directly used in the electrolyte. [1] [2] [3]
The slope of the potential vs. time graph is called the scan rate and can range from mV/s to 1,000,000 V/s. [3] The working electrode is one of the electrodes at which the oxidation/reduction reactions occur—the processes that occur at this electrode are the ones being monitored. The auxiliary electrode (or counter electrode) is the one at ...