Search results
Results from the WOW.Com Content Network
However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the critical point. The critical point of water occurs at 647.096 K (373.946 °C; 705.103 °F) and 22.064 megapascals (3,200.1 psi; 217.75 atm; 220.64 bar). [3]
The water temperature drops below the critical point as it does work in a high pressure turbine and enters the generator's condenser, resulting in slightly less fuel use. The efficiency of power plants with supercritical steam generators is higher than with subcritical steam because thermodynamic efficiency is directly related to the magnitude ...
Water/steam data table at triple point pressure (0.0006117 MPa) T ... The values in the temperature range of the boiling point of water up to the critical point (100 ...
This pressure is given by the saturated vapour pressure, and can be looked up in steam tables, or calculated. [9] As a guide, the saturated vapour pressure at 121 °C is 200 kPa, 150 °C is 470 kPa, and 200 °C is 1550 kPa. The critical point is 21.7 MPa at a temperature of 374 °C, above which water is supercritical rather than superheated ...
The SCWR operates at supercritical pressure. The reactor outlet coolant is supercritical water.Light water is used as a neutron moderator and coolant. Above the critical point, steam and liquid become the same density and are indistinguishable, eliminating the need for pressurizers and steam generators (), or jet/recirculation pumps, steam separators and dryers ().
As wet steam is heated further, the droplets evaporate, and at a high enough temperature (which depends on the pressure) all of the water evaporates and the system is in vapour–liquid equilibrium. [5] When steam has reached this equilibrium point, it is referred to as saturated steam.
The point at the very top of the dome is called the critical point. This point is where the saturated liquid and saturated vapor lines meet. Past this point, it is impossible for a liquid–vapor transformation to occur. [3] It is also where the critical temperature and critical pressure meet.
There is no generation of steam bubbles within the water, because the pressure is above the critical pressure at which steam bubbles can form. It passes below the critical point as it does work in a high-pressure turbine and enters the generator's condenser. This results in slightly less fuel use and therefore less greenhouse gas production ...