Search results
Results from the WOW.Com Content Network
Calvin cycle step 1 (black circles represent carbon atoms) Calvin cycle steps 2 and 3 combined. The enzyme RuBisCO catalyses the carboxylation of ribulose-1,5-bisphosphate, RuBP, a 5-carbon compound, by carbon dioxide (a total of 6 carbons) in a two-step reaction. [6] The product of the first step is enediol-enzyme complex that can capture CO 2 ...
Overview of the Calvin cycle and carbon fixation C3 Pathway. 2 H 2 O + 2 NADP + + 3 ADP + 3 P i + light → 2 NADPH + 2 H + + 3 ATP + O 2. The light-independent reactions undergo the Calvin-Benson cycle, in which the energy from NADPH and ATP is used to convert carbon dioxide and water into organic compounds via the enzyme RuBisCO.
Calvin–Benson cycle. C 3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C 4 and CAM.This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction:
The carbon reduction cycle is known as the Calvin cycle, but many scientists refer to it as the Calvin-Benson, Benson-Calvin, or even Calvin-Benson-Bassham (or CBB) Cycle. Nobel Prize–winning scientist Rudolph A. Marcus was later able to discover the function and significance of the electron transport chain.
The by-product pyruvate can be further degraded in the mitochondrial citric acid cycle, thereby providing additional CO 2 molecules for the Calvin Cycle. Pyruvate can also be used to recover PEP via pyruvate phosphate dikinase, a high-energy step, which requires ATP and an additional phosphate. During the following cool night, PEP is finally ...
A C3 plant uses the Calvin cycle for the initial steps that incorporate CO 2 into organic material. A C4 plant prefaces the Calvin cycle with reactions that incorporate CO 2 into four-carbon compounds. A CAM plant uses crassulacean acid metabolism, an adaptation for photosynthesis in arid conditions. C4 and CAM plants have special adaptations ...
In high-temperature and low-oxygen environments, the 3-HP/4-HB cycle uses less energy than the Calvin cycle, which is common in plants and algae. The 3-HP/4-HB cycle is a perfect method for energy conservation in archaea compared to the Calvin cycle since it fixes carbon with fewer ATP molecules.
The DSSAM Model is constructed to allow dynamic decay of most pollutants; for example, total nitrogen and phosphorus are allowed to be consumed by benthic algae in each time step, and the algal communities are given a separate population dynamic in each river reach (e.g. based upon river temperature).