enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square root of 5 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_5

    It is more precisely called the principal square root of 5, to distinguish it from the negative number with the same property. This number appears in the fractional expression for the golden ratio. It can be denoted in surd form as . It is an irrational algebraic number. [1]

  3. Rationalisation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rationalisation_(mathematics)

    In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...

  4. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Among irrational numbers are the ratio π of a circle's circumference to its diameter, Euler's number e, the golden ratio φ, and the square root of two. [1] In fact, all square roots of natural numbers , other than of perfect squares , are irrational.

  5. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.

  6. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    A real number that is not rational is called irrational. [5] Irrational numbers include the square root of 2 (⁠ ⁠), π, e, and the golden ratio (φ). Since the set of rational numbers is countable, and the set of real numbers is uncountable, almost all real numbers are irrational. [1]

  7. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    It includes all quadratic irrational roots, all rational numbers, and all numbers that can be formed from these using the basic arithmetic operations and the extraction of square roots. (By designating cardinal directions for +1, −1, + i , and − i , complex numbers such as 3 + i 2 {\displaystyle 3+i{\sqrt {2}}} are considered constructible.)

  8. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  9. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...