enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    In mathematics, the logarithm to base b is the inverse function of exponentiation with base b. That means that the logarithm of a number x to the base b is the exponent to which b must be raised to produce x. For example, since 1000 = 10 3, the logarithm base of 1000 is 3, or log 10 (1000) = 3.

  3. Logarithmic mean - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_mean

    The logarithmic mean of two numbers is smaller than the arithmetic mean and the generalized mean with exponent greater than 1. However, it is larger than the geometric mean and the harmonic mean, respectively. The inequalities are strict unless both numbers are equal.

  4. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    The mathematical notation for using the common logarithm is log(x), [4] log 10 (x), [5] or sometimes Log(x) with a capital L; [a] on calculators, it is printed as "log", but mathematicians usually mean natural logarithm (logarithm with base e ≈ 2.71828) rather than common logarithm when writing "log".

  5. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of a number is its logarithm to the base of the mathematical constant e, which is an irrational and transcendental number approximately equal to 2.718 281 828 459. [1] The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x.

  6. Logarithmic scale - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_scale

    A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. The choice of unit generally indicates the type of quantity and the base of the ...

  7. History of logarithms - Wikipedia

    en.wikipedia.org/wiki/History_of_logarithms

    Napier first called L an "artificial number", but later introduced the word "logarithm" to mean a number that indicates a ratio: λόγος meaning proportion, and ἀριθμός (arithmos) meaning number. In modern notation, the relation to natural logarithms is: [33]

  8. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g. 10 for decimal arithmetic. [3] In more advanced mathematics, the partial sums of the harmonic series

  9. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.