enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. RUR-PLE - Wikipedia

    en.wikipedia.org/wiki/RUR-PLE

    RUR - Python Learning Environment (RUR-PLE) is an educational tool to help students learn the Python programming language. Made by André Roberge. RUR-PLE uses the idea behind Karel the Robot, making the learning of Python programming more interesting. A student writes a program that controls a 'robot' that moves through a city consisting of a ...

  3. Asynchronous multi-body framework - Wikipedia

    en.wikipedia.org/wiki/Asynchronous_multi-body...

    Asynchronous multi-body framework (AMBF) is an open-source 3D versatile simulator for robots developed in April 2019. This multi-body framework provides a real-time dynamic simulation of multi-bodies such as robots, free bodies, and multi-link puzzles, paired with real-time haptic interaction with various input devices. [1]

  4. Neuroevolution - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution

    For example, the outcome of a game (i.e., whether one player won or lost) can be easily measured without providing labeled examples of desired strategies. Neuroevolution is commonly used as part of the reinforcement learning paradigm, and it can be contrasted with conventional deep learning techniques that use backpropagation ( gradient descent ...

  5. Robot learning - Wikipedia

    en.wikipedia.org/wiki/Robot_learning

    Learning can happen either through autonomous self-exploration or through guidance from a human teacher, like for example in robot learning by imitation. Robot learning can be closely related to adaptive control , reinforcement learning as well as developmental robotics which considers the problem of autonomous lifelong acquisition of ...

  6. Proximal policy optimization - Wikipedia

    en.wikipedia.org/wiki/Proximal_Policy_Optimization

    Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent's decision function to accomplish difficult tasks. PPO was developed by John Schulman in 2017, [1] and had become the default RL algorithm at the US artificial intelligence company OpenAI. [2]

  7. Deep reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Deep_reinforcement_learning

    Various techniques exist to train policies to solve tasks with deep reinforcement learning algorithms, each having their own benefits. At the highest level, there is a distinction between model-based and model-free reinforcement learning, which refers to whether the algorithm attempts to learn a forward model of the environment dynamics.

  8. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  9. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .