Search results
Results from the WOW.Com Content Network
With the normal untagged Ethernet frame overhead of 18 bytes and the 1500-byte payload, the Ethernet maximum frame size is 1518 bytes. If a 1500-byte IP packet is to be carried over a tagged Ethernet connection, the Ethernet frame maximum size needs to be 1522 bytes due to the larger size of an 802.1Q tagged frame.
The 6in4 packet format consists of the IPv6 packet preceded by an IPv4 packet header. Thus, the encapsulation overhead is the size of the IPv4 header of 20 bytes. On Ethernet with a maximum transmission unit (MTU) of 1500 bytes, IPv6 packets of 1480 bytes may therefore be transmitted without fragmentation.
An example of the fragmentation of a protocol data unit in a given layer into smaller fragments. IP fragmentation is an Internet Protocol (IP) process that breaks packets into smaller pieces (fragments), so that the resulting pieces can pass through a link with a smaller maximum transmission unit (MTU) than the original packet size.
The size of the payload of non-standard jumbo frames, typically ~9000 Bytes long, collides with the range used by EtherType, and cannot be used for indicating the length of such a frame. The proposition to resolve this conflict was to substitute the special EtherType value 0x8870 when a length would otherwise be used. [ 2 ]
Following the initial design of ATM, networks have become much faster. A 1500 byte (12000-bit) full-size Ethernet frame takes only 1.2 μs to transmit on a 10 Gbit/s network, reducing the motivation for small cells to reduce jitter due to contention. The increased link speeds by themselves do not eliminate jitter due to queuing.
Jumbo frames have payloads greater than 1500 bytes. In computer networking, jumbo frames are Ethernet frames with more than 1500 bytes of payload, the limit set by the IEEE 802.3 standard. [1] The payload limit for jumbo frames is variable: while 9000 bytes is the most commonly used limit, smaller and larger limits exist.
This added overhead can mean that a reduced maximum length limit (so-called ‘MTU’ or ‘MRU’) of 1500 − 8 = 1492 bytes is imposed on (for example) IP packets sent or received, as opposed to the usual 1500-byte Ethernet frame payload length limit which applies to standard Ethernet networks.
The maximum segment size (MSS) is a parameter of the Options field of the TCP header that specifies the largest amount of data, specified in bytes, that a computer or communications device can receive in a single TCP segment. It does not count the TCP header or the IP header (unlike, for example, the MTU for IP datagrams).