Search results
Results from the WOW.Com Content Network
The method used to compute the checksum is defined in RFC 768, and efficient calculation is discussed in RFC 1071: Checksum is the 16-bit ones' complement of the ones' complement sum of a pseudo header of information from the IP header, the UDP header, and the data, padded with zero octets at the end (if necessary) to make a multiple of two octets.
The Internet checksum, [1] [2] also called the IPv4 header checksum is a checksum used in version 4 of the Internet Protocol (IPv4) to detect corruption in the header of IPv4 packets. It is carried in the IPv4 packet header , and represents the 16-bit result of the summation of the header words.
The effect of a checksum algorithm that yields an n-bit checksum is to map each m-bit message to a corner of a larger hypercube, with dimension m + n. The 2 m + n corners of this hypercube represent all possible received messages. The valid received messages (those that have the correct checksum) comprise a smaller set, with only 2 m corners.
A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones'-complement operation prior to transmission to detect unintentional all-zero messages. Checksum schemes include parity bits, check digits, and longitudinal redundancy checks.
TCP and UDP, have a checksum that covers all the data they carry, as well as the TCP or UDP header, plus a pseudo-header that contains the source and destination IP addresses of the packet carrying the TCP or UDP header. For an originating NAT to pass TCP or UDP successfully, it must recompute the TCP or UDP header checksum based on the ...
By far the most popular FCS algorithm is a cyclic redundancy check (CRC), used in Ethernet and other IEEE 802 protocols with 32 bits, in X.25 with 16 or 32 bits, in HDLC with 16 or 32 bits, in Frame Relay with 16 bits, [3] in Point-to-Point Protocol (PPP) with 16 or 32 bits, and in other data link layer protocols.
The fixed and optional IPv6 headers are followed by the upper-layer payload, the data provided by the transport layer, for example a TCP segment or a UDP datagram. The Next Header field of the last IPv6 header indicates what type of payload is contained in this packet.
A typical ROHC implementation will aim to get the terminal into Second-Order state, where a 1-byte ROHC header can be substituted for the 40-byte IPv4/UDP/RTP or the 60-byte IPv6/UDP/RTP (i.e. VoIP) header. In this state, the 8-bit ROHC header contains three fields: a 1-bit packet-type flag (set to '1' only for longer ROHC headers)