enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algae - Wikipedia

    en.wikipedia.org/wiki/Algae

    Some unicellular species of green algae, many golden algae, euglenids, dinoflagellates, and other algae have become heterotrophs (also called colorless or apochlorotic algae), sometimes parasitic, relying entirely on external energy sources and have limited or no photosynthetic apparatus.

  3. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    Today, many heterotrophs and autotrophs also utilize mutualistic relationships that provide needed resources to both organisms. [28] One example of this is the mutualism between corals and algae, where the former provides protection and necessary compounds for photosynthesis while the latter provides oxygen. [29]

  4. Heterotrophic nutrition - Wikipedia

    en.wikipedia.org/wiki/Heterotrophic_nutrition

    Heterotrophic organisms have to take in all the organic substances they need to survive. All animals, certain types of fungi, and non-photosynthesizing plants are heterotrophic. In contrast, green plants, red algae, brown algae, and cyanobacteria are all autotrophs, which use photosynthesis to produce their own

  5. Portal:Algae - Wikipedia

    en.wikipedia.org/wiki/Portal:Algae

    Some unicellular species of green algae, many golden algae, euglenids, dinoflagellates, and other algae have become heterotrophs (also called colorless or apochlorotic algae), sometimes parasitic, relying entirely on external energy sources and have limited

  6. Euglena - Wikipedia

    en.wikipedia.org/wiki/Euglena

    When feeding as a heterotroph, Euglena takes in nutrients by osmotrophy, and can survive without light on a diet of organic matter, such as beef extract, peptone, acetate, ethanol or carbohydrates. [ 8 ] [ 9 ] When there is sufficient sunlight for it to feed by phototrophy , it uses chloroplasts containing the pigments chlorophyll a and ...

  7. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    Photosynthesis is the main means by which plants, algae and many bacteria produce organic compounds and oxygen from carbon dioxide and water (green arrow). An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds , which can be used by other organisms .

  8. Scenedesmus - Wikipedia

    en.wikipedia.org/wiki/Scenedesmus

    Scenedesmus is known to have high biomass productivity among green algae, and has been actively researched for its use for biodiesel production. Its heterotrophic production of biomass and lipid in optimized conditions is reported to have higher efficiency than its autotrophic production.

  9. Photoheterotroph - Wikipedia

    en.wikipedia.org/wiki/Photoheterotroph

    Photoheterotrophs—either 1) cyanobacteria (i.e. facultative heterotrophs in nutrient-limited environments like Synechococcus and Prochlorococcus), 2) aerobic anoxygenic photoheterotrophic bacteria (AAP; employing bacteriochlorophyll-based reaction centers), 3) proteorhodopsin (PR)-containing bacteria and archaea, and 4) heliobacteria (i.e ...