enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  3. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    2D Convolution Animation. Convolution is the process of adding each element of the image to its local neighbors, weighted by the kernel. This is related to a form of mathematical convolution. The matrix operation being performed—convolution—is not traditional matrix multiplication, despite being similarly denoted by *.

  4. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations. [1] The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).

  5. Savitzky–Golay filter - Wikipedia

    en.wikipedia.org/wiki/Savitzky–Golay_filter

    Accurate computation of C in multidimensional cases becomes challenging, as precision of standard floating point numbers available in computer programming languages no longer remain sufficient. The insufficient precision causes the floating point truncation errors to become comparable to the magnitudes of some C elements, which, in turn ...

  6. Convolution theorem - Wikipedia

    en.wikipedia.org/wiki/Convolution_theorem

    In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).

  7. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space.

  8. Discrete wavelet transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_wavelet_transform

    The wavelet filterbank does each of these two O convolutions, then splits the signal into two branches of size N/2. But it only recursively splits the upper branch convolved with g [ n ] {\displaystyle g[n]} (as contrasted with the FFT, which recursively splits both the upper branch and the lower branch).

  9. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    where x is an input sequence, y j is a sequence from output j, h j is an impulse response for output j and denotes convolution. A convolutional encoder is a discrete linear time-invariant system . Every output of an encoder can be described by its own transfer function , which is closely related to the generator polynomial.