Search results
Results from the WOW.Com Content Network
There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each equivalence class. The most common choice is the initial ordinal in that class. This is usually taken as the definition of cardinal number in axiomatic set theory.
A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null , the smallest infinite cardinal In mathematics , a cardinal number , or cardinal for short, is what is commonly called the number of elements of a set .
Assuming the existence of an infinite set N consisting of all natural numbers and assuming the existence of the power set of any given set allows the definition of a sequence N, P(N), P(P(N)), P(P(P(N))), … of infinite sets where each set is the power set of the set preceding it. By Cantor's theorem, the cardinality of each set in this ...
The task is then to find a minimum cardinality subset of left-vertices that has a non-trivial intersection with each of the right-vertices, which is precisely the hitting set problem. In the field of computational geometry, a hitting set for a collection of geometrical objects is also called a stabbing set or piercing set. [5]
The oldest definition of the cardinality of a set X (implicit in Cantor and explicit in Frege and Principia Mathematica) is as the set of all sets that are equinumerous with X: this does not work in ZFC or other related systems of axiomatic set theory because this collection is too large to be a set, but it does work in type theory and in New ...
A set is countable if it can be enumerated, that is, if there exists an enumeration of it. Otherwise, it is uncountable. For example, the set of the real numbers is uncountable. A set is finite if it can be enumerated by means of a proper initial segment {1, ..., n} of the natural numbers, in which case, its cardinality is n.
As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.
In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .