enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    In each iteration of the method, we increase the penalty coefficient (e.g. by a factor of 10), solve the unconstrained problem and use the solution as the initial guess for the next iteration. Solutions of the successive unconstrained problems will asymptotically converge to the solution of the original constrained problem.

  3. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Let S 1 be the selling price of wheat and S 2 be the selling price of barley, per hectare. If we denote the area of land planted with wheat and barley by x 1 and x 2 respectively, then profit can be maximized by choosing optimal values for x 1 and x 2. This problem can be expressed with the following linear programming problem in the standard form:

  4. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    For the definitions below, we first present the linear program in the so-called equational form: . maximize subject to = and . where: and are vectors of size n (the number of variables);

  5. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.

  6. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    Suppose we have the linear program: Maximize c T x subject to Ax ≤ b, x ≥ 0.. We would like to construct an upper bound on the solution. So we create a linear combination of the constraints, with positive coefficients, such that the coefficients of x in the constraints are at least c T.

  7. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Some of the local methods assume that the graph admits a perfect matching; if this is not the case, then some of these methods might run forever. [1]: 3 A simple technical way to solve this problem is to extend the input graph to a complete bipartite graph, by adding artificial edges with very large weights. These weights should exceed the ...

  8. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    Two 0–1 integer programs that are equivalent, in that they have the same objective function and the same set of feasible solutions, may have quite different linear programming relaxations: a linear programming relaxation can be viewed geometrically, as a convex polytope that includes all feasible solutions and excludes all other 0–1 vectors ...

  9. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    The SciPy scientific library, for instance, uses HiGHS as its LP solver [13] from release 1.6.0 [14] and the HiGHS MIP solver for discrete optimization from release 1.9.0. [15] As well as offering an interface to HiGHS, the JuMP modelling language for Julia [ 16 ] also describes the specific use of HiGHS in its user documentation. [ 17 ]