Search results
Results from the WOW.Com Content Network
For example, in the simple equation 3 + 2y = 8y, both sides actually contain 2y (because 8y is the same as 2y + 6y). Therefore, the 2y on both sides can be cancelled out, leaving 3 = 6y, or y = 0.5. This is equivalent to subtracting 2y from both sides. At times, cancelling out can introduce limited changes or extra solutions to an equation.
This algorithm computes not only the greatest common divisor (the last non zero r i), but also all the subresultant polynomials: The remainder r i is the (deg(r i−1) − 1)-th subresultant polynomial. If deg(r i) < deg(r i−1) − 1, the deg(r i)-th subresultant polynomial is lc(r i) deg(r i−1)−deg(r i)−1 r i. All the other ...
5.1.6 Letter-like symbols or constants. ... 9.1 Quadratic polynomial. ... one has to add 1= just before the formula for avoiding confusion with the template syntax; ...
A polynomial function is one that has the form = + + + + + where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on.
The first step is to determine a common denominator D of these fractions – preferably the least common denominator, which is the least common multiple of the Q i. This means that each Q i is a factor of D, so D = R i Q i for some expression R i that is not a fraction. Then
As the (+) cancel this is a linear recurrence equation with polynomial coefficients which can be solved for an unknown polynomial solution (). There are algorithms to find polynomial solutions . The solutions for z ( n ) {\textstyle z(n)} can then be used again to compute the rational solutions y ( n ) = z ( n ) / u ( n ) {\textstyle y(n)=z(n ...
If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q ( x ) is simply the quotient obtained from the division process; since r is known to be a root of P ( x ), it is known that the remainder must be zero.
A universal denominator is a polynomial such that the denominator of every rational solution divides . Abramov showed how this universal denominator can be computed by only using the first and the last coefficient polynomial p 0 {\textstyle p_{0}} and p r {\textstyle p_{r}} .