Search results
Results from the WOW.Com Content Network
Limits of integration can also be defined for improper integrals, with the limits of integration of both + and again being a and b. For an improper integral ∫ a ∞ f ( x ) d x {\displaystyle \int _{a}^{\infty }f(x)\,dx} or ∫ − ∞ b f ( x ) d x {\displaystyle \int _{-\infty }^{b}f(x)\,dx} the limits of integration are a and ∞, or − ...
If p ≤ 0, then the nth-term test identifies the series as divergent. If 0 < p ≤ 1, then the nth-term test is inconclusive, but the series is divergent by the integral test for convergence. If 1 < p, then the nth-term test is inconclusive, but the series is convergent by the integral test for convergence.
The function f(x) is called the integrand, the points a and b are called the limits (or bounds) of integration, and the integral is said to be over the interval [a, b], called the interval of integration. [18] A function is said to be integrable if its integral over its domain is finite. If limits are specified, the integral is called a ...
In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.
In mathematics, the comparison test, sometimes called the direct comparison test to distinguish it from similar related tests (especially the limit comparison test), provides a way of deducing whether an infinite series or an improper integral converges or diverges by comparing the series or integral to one whose convergence properties are known.
In mathematics, a limit is the value that a function (or sequence) approaches as the argument (or index) approaches some value. [1] Limits of functions are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.
A commonly-used corollary of the integral test is the p-series test. ... This can be proved by taking the logarithm of the product and using limit comparison test. [9 ...
The Lebesgue integral describes better how and when it is possible to take limits under the integral sign (via the monotone convergence theorem and dominated convergence theorem). While the Riemann integral considers the area under a curve as made out of vertical rectangles, the Lebesgue definition considers horizontal slabs that are not ...