Search results
Results from the WOW.Com Content Network
Nanofibers were first produced via electrospinning more than four centuries ago. [28] [29] Beginning with the development of the electrospinning method, English physicist William Gilbert (1544-1603) first documented the electrostatic attraction between liquids by preparing an experiment in which he observed a spherical water drop on a dry surface warp into a cone shape when it was held below ...
A strong electric field is applied to the solution to charge the polymer strands. The solution is put into a syringe and aimed at an oppositely charged collector plate. When the force of attraction between the polymer nanofibers and the collector plate exceed the surface tension of the solution , the nanofibers are released from the solution ...
A nanofiber has two external dimensions in the nanoscale, with nanotubes being hollow nanofibers and nanorods being solid nanofibers. A nanoplate/nanosheet has one external dimension in the nanoscale, [20] and if the two larger dimensions are significantly different it is called a nanoribbon. For nanofibers and nanoplates, the other dimensions ...
Gold; Iron; Iron oxide; Iron–platinum ... cellulose nanofibers or cellulose ... There is also a strong concentration dependence as the storage modulus increases 5 ...
To put it simply, nanofibers are a super, super thin material that can be made from a super strong (and super thin) carbon material, and are generally good conductors of heat and electricity.
Although graphene sheets have 2D symmetry, carbon nanotubes by geometry have different properties in axial and radial directions. It has been shown that CNTs are very strong in the axial direction. [1] Young's modulus on the order of 270–950 GPa and tensile strength of 11–63 GPa were obtained. [1]
Nanoscale iron particles are sub-micrometer particles of iron metal. They are highly reactive because of their large surface area. In the presence of oxygen and water, they rapidly oxidize to form free iron ions. They are widely used in medical and laboratory applications and have also been studied for remediation of industrial sites ...
The high resistive iron oxide nanoparticles helps to reduce the eddy current losses where as the Ni metal helps in attaining high permeability. DC magnetic properties such as Saturation magnetization lies between each of its constituent parts indicating that the physical properties of the materials can be altered by creating these nanocomposites.