Search results
Results from the WOW.Com Content Network
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
In Bayesian statistics, a credible interval is an interval used to characterize a probability distribution.It is defined such that an unobserved parameter value has a particular probability to fall within it.
As explained above, while s 2 is an unbiased estimator for the population variance, s is still a biased estimator for the population standard deviation, though markedly less biased than the uncorrected sample standard deviation. This estimator is commonly used and generally known simply as the "sample standard deviation".
For instance, if estimating the effect of a drug on blood pressure with a 95% confidence interval that is six units wide, and the known standard deviation of blood pressure in the population is 15, the required sample size would be =, which would be rounded up to 97, since sample sizes must be integers and must meet or exceed the calculated ...
In statistics and in particular statistical theory, unbiased estimation of a standard deviation is the calculation from a statistical sample of an estimated value of the standard deviation (a measure of statistical dispersion) of a population of values, in such a way that the expected value of the calculation equals the true value.
StatCrunch can interact with multiple graphs simultaneously. If a user selects a data point on one graph, then that same data point is highlighted on all other displayed graphs. [7] In addition to standard statistical and graphing procedures, StatCrunch has a collection of about forty "applets" which illustrate statistical concepts ...
If one makes the parametric assumption that the underlying distribution is a normal distribution, and has a sample set {X 1, ..., X n}, then confidence intervals and credible intervals may be used to estimate the population mean μ and population standard deviation σ of the underlying population, while prediction intervals may be used to estimate the value of the next sample variable, X n+1.
In statistics a population proportion, generally denoted by or the Greek letter, [1] is a parameter that describes a percentage value associated with a population. A census can be conducted to determine the actual value of a population parameter, but often a census is not practical due to its costs and time consumption.