enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    The multiples of a given prime are generated as a sequence of numbers starting from that prime, with constant difference between them that is equal to that prime. [1] This is the sieve's key distinction from using trial division to sequentially test each candidate number for divisibility by each prime. [2]

  3. Sieve of Atkin - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Atkin

    The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...

  4. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    John Selfridge has conjectured that if p is an odd number, and p ≡ ±2 (mod 5), then p will be prime if both of the following hold: 2 p−1 ≡ 1 (mod p), f p+1 ≡ 0 (mod p), where f k is the k-th Fibonacci number. The first condition is the Fermat primality test using base 2.

  5. Pocklington primality test - Wikipedia

    en.wikipedia.org/wiki/Pocklington_primality_test

    The Pocklington–Lehmer primality test follows directly from this corollary. To use this corollary, first find enough factors of N − 1 so the product of those factors exceeds . Call this product A. Then let B = (N − 1)/A be the remaining, unfactored portion of N − 1. It does not matter whether B is prime.

  6. Trial division - Wikipedia

    en.wikipedia.org/wiki/Trial_division

    A definite bound on the prime factors is possible. Suppose P i is the i 'th prime, so that P 1 = 2, P 2 = 3, P 3 = 5, etc. Then the last prime number worth testing as a possible factor of n is P i where P 2 i + 1 > n; equality here would mean that P i + 1 is a factor.

  7. AKS primality test - Wikipedia

    en.wikipedia.org/wiki/AKS_primality_test

    The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]

  8. Puppy Only Wants to Be Held? Here's What to Do - AOL

    www.aol.com/puppy-only-wants-held-heres...

    2-Month-Old Puppy Development. When puppies are around the age of 8 to 12 weeks, there is a lot going on from a developmental standpoint. During this period, puppies are in the prime time of the ...

  9. Quine–McCluskey algorithm - Wikipedia

    en.wikipedia.org/wiki/Quine–McCluskey_algorithm

    To find the essential prime implicants, we look for columns with only one " ". If a column has only one " ", this means that the minterm can only be covered by one prime implicant. This prime implicant is essential. For example: in the first column, with minterm 4, there is only one " ". This means that m(4,12) is essential (hence marked by ...