Search results
Results from the WOW.Com Content Network
Tetrakis(triphenylphosphine)palladium(0) (sometimes called quatrotriphenylphosphine palladium) is the chemical compound [Pd(P(C 6 H 5) 3) 4], often abbreviated Pd(PPh 3) 4, or rarely PdP 4. It is a bright yellow crystalline solid that becomes brown upon decomposition in air .
In the Appel reaction, a mixture of PPh 3 and CX 4 (X = Cl, Br) is used to convert alcohols to alkyl halides. Triphenylphosphine oxide (OPPh 3) is a byproduct. PPh 3 + CBr 4 + RCH 2 OH → OPPh 3 + RCH 2 Br + HCBr 3. This reaction commences with nucleophilic attack of PPh 3 on CBr 4, an extension of the quaternization reaction listed above.
Palladium forms a variety of ionic, coordination, and organopalladium compounds, typically with oxidation state Pd 0 or Pd 2+. Palladium(III) compounds have also been reported. Palladium compounds are frequently used as catalysts in cross-coupling reactions such as the Sonogashira coupling and Suzuki reaction.
Triphenylphosphine oxide (often abbreviated TPPO) is the organophosphorus compound with the formula OP(C 6 H 5) 3, also written as Ph 3 PO or PPh 3 O (Ph = C 6 H 5). It is one of the more common phosphine oxides. This colourless crystalline compound is a common but potentially useful waste product in reactions involving triphenylphosphine.
The reaction occurs in two distinct steps. In the first step, PtCl 2 (PPh 3) 2 is generated. In the second step, this platinum(II) complex is reduced. The overall synthesis can be summarized as: K 2 [PtCl 4] + 2KOH + 4PPh 3 + C 2 H 5 OH → Pt(PPh 3) 4 + 4KCl + CH 3 CHO + 2H 2 O. Pt(PPh 3) 4 reacts with oxidants to give platinum(II) derivatives:
Wilkinson's catalyst (chloridotris(triphenylphosphine)rhodium(I)) is a coordination complex of rhodium with the formula [RhCl(PPh 3)], where 'Ph' denotes a phenyl group. It is a red-brown colored solid that is soluble in hydrocarbon solvents such as benzene, and more so in tetrahydrofuran or chlorinated solvents such as dichloromethane .
Fractional oxidation states are often used to represent the average oxidation state of several atoms of the same element in a structure. For example, the formula of magnetite is Fe 3 O 4, implying an average oxidation state for iron of + 8 / 3 . [17]: 81–82 However, this average value may not be representative if the atoms are not ...
The Suzuki reaction or Suzuki coupling is an organic reaction that uses a palladium complex catalyst to cross-couple a boronic acid to an organohalide. [1] [2] [3] It was first published in 1979 by Akira Suzuki, and he shared the 2010 Nobel Prize in Chemistry with Richard F. Heck and Ei-ichi Negishi for their contribution to the discovery and development of noble metal catalysis in organic ...