enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quartic function - Wikipedia

    en.wikipedia.org/wiki/Quartic_function

    When m is a root of this equation, the right-hand side of equation is the square (). However, this induces a division by zero if m = 0. This implies q = 0, and thus that the depressed equation is bi-quadratic, and may be solved by an easier method (see above). This was not a problem at the time of Ferrari, when one solved only explicitly given ...

  3. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    The roots , of the quadratic polynomial () = + + satisfy + =, =. The first of these equations can be used to find the minimum (or maximum) of P ; see Quadratic equation § Vieta's formulas .

  4. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.

  5. Quartic equation - Wikipedia

    en.wikipedia.org/wiki/Quartic_equation

    Then they can be divided out and the resulting quadratic equation solved. In general, there exist only four possible cases of quartic equations with multiple roots, which are listed below: [3] Multiplicity-4 (M4): when the general quartic equation can be expressed as () =, for some real number. This case can always be reduced to a biquadratic ...

  6. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    The roots of the quadratic function y = ⁠ 1 / 2 ⁠ x 2 − 3x + ⁠ 5 / 2 ⁠ are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.

  7. Quadratic Gauss sum - Wikipedia

    en.wikipedia.org/wiki/Quadratic_Gauss_sum

    In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum.

  8. Gaussian period - Wikipedia

    en.wikipedia.org/wiki/Gaussian_period

    We also know, from the trace definition, that P lies in a quadratic extension of Q. Therefore, as Gauss knew, P satisfies a quadratic equation with integer coefficients. Evaluating the square of the sum P is connected with the problem of counting how many quadratic residues between 1 and p − 1 are succeeded by

  9. Completing the square - Wikipedia

    en.wikipedia.org/wiki/Completing_the_square

    Given a quadratic polynomial of the form + + it is possible to factor out the coefficient a, and then complete the square for the resulting monic polynomial. Example: + + = [+ +] = [(+) +] = (+) + = (+) + This process of factoring out the coefficient a can further be simplified by only factorising it out of the first 2 terms.