Search results
Results from the WOW.Com Content Network
A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal; examples include Platonic and Archimedean solids as well as prisms and antiprisms. [3] The Johnson solids are named after American mathematician Norman Johnson (1930–2017), who published a list of 92
A Johnson solid is a convex polyhedron whose faces are all regular polygons. [1] Here, a polyhedron is said to be convex if the shortest path between any two of its vertices lies either within its interior or on its boundary, none of its faces are coplanar (meaning they do not share the same plane, and do not "lie flat"), and none of its edges are colinear (meaning they are not segments of the ...
A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966. [1]
In mathematics, a Johnson solid is a type of convex polyhedron. Pages in category "Johnson solids" The following 97 pages are in this category, out of 97 total. ...
This construction is similar to icosidodecahedron (or pentagonal gyrobirotunda), an Archimedean solid: the difference is one of its rotundas twisted around 36°, making the pentagonal faces connect to the triangular one, a process known as gyration. [1] [2] A convex polyhedron in which all of the faces are regular polygons is the Johnson solid.
A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966. [1] It can be constructed as a rhombicosidodecahedron with ...
A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids, Archimedean solids, prisms, or antiprisms). They were named by Norman Johnson, who first listed these polyhedra in 1966. [1]
The pentagonal gyrobicupola is a composite polyhedron: it is constructed by attaching two pentagonal cupolas base-to-base. This construction is similar to the pentagonal orthobicupola; the difference is that one of cupolas in the pentagonal gyrobicupola is twisted at 36°, as suggested by the prefix gyro-.