Search results
Results from the WOW.Com Content Network
The order of operations, that is, the order in which the operations in an expression are usually performed, results from a convention adopted throughout mathematics, science, technology and many computer programming languages. It is summarized as: [2] [5] Parentheses; Exponentiation; Multiplication and division; Addition and subtraction
This subsequence has length six; the input sequence has no seven-member increasing subsequences. The longest increasing subsequence in this example is not the only solution: for instance, 0, 4, 6, 9, 11, 15 0, 2, 6, 9, 13, 15 0, 4, 6, 9, 13, 15. are other increasing subsequences of equal length in the same input sequence.
Related problems include approximate sorting (sorting a sequence to within a certain amount of the correct order), partial sorting (sorting only the k smallest elements of a list, or finding the k smallest elements, but unordered) and selection (computing the kth smallest element). These can be solved inefficiently by a total sort, but more ...
Matrix chain multiplication (or the matrix chain ordering problem [1]) is an optimization problem concerning the most efficient way to multiply a given sequence of matrices. The problem is not actually to perform the multiplications, but merely to decide the sequence of the matrix multiplications involved.
An infinite sequence of real numbers (in blue). This sequence is neither increasing, decreasing, convergent, nor Cauchy. It is, however, bounded. In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called elements, or terms).
It concerns sequences of integers in which each term is obtained from the previous term as follows: if a term is even, the next term is one half of it. If a term is odd, the next term is 3 times the previous term plus 1. The conjecture is that these sequences always reach 1, no matter which positive integer is chosen to start the sequence.
An order-embedding is a function f between orders that is both order-preserving and order-reflecting. Examples for these definitions are found easily. Examples for these definitions are found easily. For instance, the function that maps a natural number to its successor is clearly monotone with respect to the natural order.
In computer science, arranging in an ordered sequence is called "sorting". Sorting is a common operation in many applications, and efficient algorithms have been developed to perform it. The most common uses of sorted sequences are: making lookup or search efficient; making merging of sequences efficient; enabling processing of data in a ...