enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of RNA-Seq bioinformatics tools - Wikipedia

    en.wikipedia.org/wiki/List_of_RNA-Seq...

    Using DESeq2 as a framework, DEvis provides a wide variety of tools for data manipulation, visualization, and project management. DEXSeq is Bioconductor package that finds differential differential exon usage based on RNA-Seq exon counts between samples. DEXSeq employs negative binomial distribution, provides options to visualization and ...

  3. DESeq2 - Wikipedia

    en.wikipedia.org/wiki/DESeq2

    DESeq2 is a software package in the field of bioinformatics and computational biology for the statistical programming language R. It is primarily employed for the analysis of high-throughput RNA sequencing (RNA-seq) data to identify differentially expressed genes between different experimental conditions.

  4. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    Normalizing the RMSD facilitates the comparison between datasets or models with different scales. Though there is no consistent means of normalization in the literature, common choices are the mean or the range (defined as the maximum value minus the minimum value) of the measured data: [4]

  5. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...

  6. Minimum mean square error - Wikipedia

    en.wikipedia.org/wiki/Minimum_mean_square_error

    Standard method like Gauss elimination can be used to solve the matrix equation for .A more numerically stable method is provided by QR decomposition method. Since the matrix is a symmetric positive definite matrix, can be solved twice as fast with the Cholesky decomposition, while for large sparse systems conjugate gradient method is more effective.

  7. Studentized residual - Wikipedia

    en.wikipedia.org/wiki/Studentized_residual

    The usual estimate of σ 2 is the internally studentized residual ^ = = ^. where m is the number of parameters in the model (2 in our example).. But if the i th case is suspected of being improbably large, then it would also not be normally distributed.

  8. Index of dispersion - Wikipedia

    en.wikipedia.org/wiki/Index_of_dispersion

    In probability theory and statistics, the index of dispersion, [1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard ...

  9. Normal probability plot - Wikipedia

    en.wikipedia.org/wiki/Normal_probability_plot

    Normal probability plots are made of raw data, residuals from model fits, and estimated parameters. A normal probability plot. In a normal probability plot (also called a "normal plot"), the sorted data are plotted vs. values selected to make the resulting image look close to a straight line if the data are approximately normally distributed.