Search results
Results from the WOW.Com Content Network
A variety of hardness-testing methods are available, including the Vickers, Brinell, Rockwell, Meyer and Leeb tests. Although it is impossible in many cases to give an exact conversion, it is possible to give an approximate material-specific comparison table for steels .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
1095, a popular high-carbon steel for knives; it is harder but more brittle than lower-carbon steels such as 1055, 1060, 1070, and 1080. It has a carbon content of 0.90-1.03% [7] Many older pocket knives and kitchen knives were made of 1095. With a good heat treat, the high carbon 1095 and O-1 tool steels can make excellent knives.
A variety of food colorings, added to beakers of water. Food coloring, color additive or colorant is any dye, pigment, or substance that imparts color when it is added to food or beverages. Colorants can be supplied as liquids, powders, gels, or pastes. Food coloring is commonly used in commercial products and in domestic cooking.
For example, a 1060 steel is a plain-carbon steel containing 0.60 wt% C. [4] An "H" suffix can be added to any designation to denote hardenability is a major requirement. The chemical requirements are loosened but hardness values defined for various distances on a Jominy test .
TTT diagram of isothermal transformations of a hypoeutectoid carbon steel; showing the main components obtained when cooling the steel and its relation with the Fe-C phase diagram of carbon steels. Austenite is slightly undercooled when quenched below Eutectoid temperature. When given more time, stable microconstituents can form: ferrite and ...
Both carbon and alloy steels are suitable for case-hardening; typically mild steels are used, with low carbon content, usually less than 0.3% (see plain-carbon steel for more information). These mild steels are not normally hardenable due to the low quantity of carbon, so the surface of the steel is chemically altered to increase the hardenability.
The final result of exactly how hard the steel becomes depends on the amount of carbon present in the metal. Only steel that is high in carbon can be hardened and tempered. If a metal does not contain the necessary quantity of carbon, then its crystalline structure cannot be broken, and therefore the physical makeup of the steel cannot be altered.