Search results
Results from the WOW.Com Content Network
Mitochondrial DNA is a main source of this extrachromosomal DNA in eukaryotes. [5] The fact that this organelle contains its own DNA supports the hypothesis that mitochondria originated as bacterial cells engulfed by ancestral eukaryotic cells. [6] Extrachromosomal DNA is often used in research into replication because it is easy to identify ...
The term plasmid was coined in 1952 by the American molecular biologist Joshua Lederberg to refer to "any extrachromosomal hereditary determinant." [11] [12] The term's early usage included any bacterial genetic material that exists extrachromosomally for at least part of its replication cycle, but because that description includes bacterial viruses, the notion of plasmid was refined over time ...
Extrachromosomal circular DNA (eccDNA) is a type of double-stranded circular DNA structure that was first discovered in 1964 by Alix Bassel and Yasuo Hotta. [1] In contrast to previously identified circular DNA structures (e.g., bacterial plasmids, mitochondrial DNA, circular bacterial chromosomes, or chloroplast DNA), eccDNA are circular DNA found in the eukaryotic nuclei of plant and animal ...
Circular extrachromosomal DNA are not only found in yeast but other eukaryotic organisms. [15] [16] A regulated formation of eccDNA in preblastua Xenopus embryos has been developed. The population of circular rDNA is decreased in embryos, indicative of the circular rDNA migrating to linear DNA, as was shown in their analysis on 2D gel ...
CpG-islands characteristic in microDNA compared to a single C-G bp. [1] MicroDNA is the most abundant subtype of Extrachromosomal Circular DNA (eccDNA) in humans, typically ranging from 200-400 base pairs in length and enriched in non-repetitive genomic sequences with a high density of exons.
Extrachromosomal DNA, located outside of the nucleoid region as circular or linear plasmids The bacterial DNA is not packaged using histones to form chromatin as in eukaryotes but instead exists as a highly compact supercoiled structure, the precise nature of which remains unclear. [ 6 ]
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
An extrachromosomal array is a method for mosaic analysis in genetics. It is a cosmid, and contains two functioning closely linked genes: a gene of interest and a mosaic marker. Such an array is injected into germ line cells, which already contain mutant (specifically, loss of function) alleles of all three genes in their chromosomal DNA.