enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ekman transport - Wikipedia

    en.wikipedia.org/wiki/Ekman_transport

    Ekman transport is the net motion of fluid as the result of a balance between Coriolis and turbulent drag forces. In the picture above, the wind blowing North in the northern hemisphere creates a surface stress and a resulting Ekman spiral is found below it in the water column.

  3. Ekman spiral - Wikipedia

    en.wikipedia.org/wiki/Ekman_spiral

    The Ekman spiral occurs as a consequence of the Coriolis effect. The Ekman spiral is an arrangement of ocean currents: the directions of horizontal current appear to twist as the depth changes. [1] The oceanic wind driven Ekman spiral is the result of a force balance created by a shear stress force, Coriolis force and the water drag. This force ...

  4. Geostrophic current - Wikipedia

    en.wikipedia.org/wiki/Geostrophic_current

    A geostrophic current is an oceanic current in which the pressure gradient force is balanced by the Coriolis effect. The direction of geostrophic flow is parallel to the isobars , with the high pressure to the right of the flow in the Northern Hemisphere , and the high pressure to the left in the Southern Hemisphere .

  5. Dynamo theory - Wikipedia

    en.wikipedia.org/wiki/Dynamo_theory

    A requirement for the induction of field is a rotating fluid. Rotation in the outer core is supplied by the Coriolis effect caused by the rotation of the Earth. The Coriolis force tends to organize fluid motions and electric currents into columns (also see Taylor columns) aligned with the rotation axis.

  6. Ocean current - Wikipedia

    en.wikipedia.org/wiki/Ocean_current

    An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. [1] Depth contours, shoreline configurations, and interactions with other currents influence a current's direction and ...

  7. Ocean gyre - Wikipedia

    en.wikipedia.org/wiki/Ocean_gyre

    In oceanography, a gyre (/ ˈ dʒ aɪ ər /) is any large system of ocean surface currents moving in a circular fashion driven by wind movements. Gyres are caused by the Coriolis effect; planetary vorticity, horizontal friction and vertical friction determine the circulatory patterns from the wind stress curl ().

  8. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    The coriolis effect in meteorology PDF-file. 5 pages. A detailed explanation by Mats Rosengren of how the gravitational force and the rotation of the Earth affect the atmospheric motion over the Earth surface. 2 figures; 10 Coriolis Effect Videos and Games- from the About.com Weather Page; Coriolis Force – from ScienceWorld

  9. Taylor column - Wikipedia

    en.wikipedia.org/wiki/Taylor_column

    A Taylor column is a fluid dynamics phenomenon that occurs as a result of the Coriolis effect. It was named after Geoffrey Ingram Taylor . Rotating fluids that are perturbed by a solid body tend to form columns parallel to the axis of rotation called Taylor columns.