Search results
Results from the WOW.Com Content Network
The interior perpendicular bisector of a side of a triangle is the segment, falling entirely on and inside the triangle, of the line that perpendicularly bisects that side. The three perpendicular bisectors of a triangle's three sides intersect at the circumcenter (the center of the circle through the three vertices). Thus any line through a ...
Constructing the perpendicular bisector from a segment; Finding the midpoint of a segment. Drawing a perpendicular line from a point to a line. Bisecting an angle; Mirroring a point in a line; Constructing a line through a point tangent to a circle; Constructing a circle through 3 noncollinear points; Drawing a line through a given point ...
For help on the process, see Wikipedia:How to draw a diagram with Inkscape. This tutorial aims to instruct a beginner on the basic principles of vector graphics using Microsoft Word (Office 97 or later). The basic principles are the same in other drawing programs such as CorelDraw or the free and open source OpenOffice.org.
The three perpendicular bisectors meet in a single point, the triangle's circumcenter; this point is the center of the circumcircle, the circle passing through all three vertices. [20] Thales' theorem implies that if the circumcenter is located on the side of the triangle, then the angle opposite that side is a right angle. [21]
The three perpendicular bisectors meet at the circumcenter. Other sets of lines associated with a triangle are concurrent as well. For example: Any median (which is necessarily a bisector of the triangle's area) is concurrent with two other area bisectors each of which is parallel to a side. [1]
In geometry, the perpendicular bisector construction of a quadrilateral is a construction which produces a new quadrilateral from a given quadrilateral using the perpendicular bisectors to the sides of the former quadrilateral.
The set of points equidistant from two points is a perpendicular bisector to the line segment connecting the two points. [8] The set of points equidistant from two intersecting lines is the union of their two angle bisectors. All conic sections are loci: [9] Circle: the set of points at constant distance (the radius) from a fixed point (the ...
The segment AB is perpendicular to the segment CD because the two angles it creates (indicated in orange and blue) are each 90 degrees. The segment AB can be called the perpendicular from A to the segment CD, using "perpendicular" as a noun. The point B is called the foot of the perpendicular from A to segment CD, or simply, the foot of A on CD ...