Search results
Results from the WOW.Com Content Network
The ergodic theory of dynamical systems has recently been used to prove combinatorial theorems about number theory which has given rise to the field of arithmetic combinatorics. Also dynamical systems theory is heavily involved in the relatively recent field of combinatorics on words. Also combinatorial aspects of dynamical systems are studied.
In sports biomechanics, dynamical systems theory has emerged in the movement sciences as a viable framework for modeling athletic performance and efficiency. It comes as no surprise, since dynamical systems theory has its roots in Analytical mechanics. From psychophysiological perspective, the human movement system is a highly intricate network ...
A discrete dynamical system, discrete-time dynamical system is a tuple (T, M, Φ), where M is a manifold locally diffeomorphic to a Banach space, and Φ is a function. When T is taken to be the integers, it is a cascade or a map. If T is restricted to the non-negative integers we call the system a semi-cascade. [14]
Dynamical systems deals with the study of the solutions to the equations of motion of systems that are primarily mechanical in nature; although this includes both planetary orbits as well as the behaviour of electronic circuits and the solutions to partial differential equations that arise in biology.
The central object of study in topological dynamics is a topological dynamical system, i.e. a topological space, together with a continuous transformation, a continuous flow, or more generally, a semigroup of continuous transformations of that space.
This category contains System and systems science related articles within the scope of the WikiProject Systems. Articles are automatically added to this category by using the project banner template .
In dynamical systems theory, an area of pure mathematics, a Morse–Smale system is a smooth dynamical system whose non-wandering set consists of finitely many hyperbolic equilibrium points and hyperbolic periodic orbits and satisfying a transversality condition on the stable and unstable manifolds.
In mathematics, symbolic dynamics is the study of dynamical systems defined on a discrete space consisting of infinite sequences of abstract symbols. The evolution of the dynamical system is defined as a simple shift of the sequence. Because of their explicit, discrete nature, such systems are often relatively easy to characterize and understand.