Search results
Results from the WOW.Com Content Network
For any point, the abscissa is the first value (x coordinate), and the ordinate is the second value (y coordinate). In mathematics , the abscissa ( / æ b ˈ s ɪ s . ə / ; plural abscissae or abscissas ) and the ordinate are respectively the first and second coordinate of a point in a Cartesian coordinate system : [ 1 ] [ 2 ]
For example, Plücker coordinates are used to determine the position of a line in space. [11] When there is a need, the type of figure being described is used to distinguish the type of coordinate system, for example the term line coordinates is used for any coordinate system that specifies the position of a line.
The black dot shows the point with coordinates x = 2, y = 3, and z = 4, or (2, 3, 4). A Cartesian coordinate system for a three-dimensional space consists of an ordered triplet of lines (the axes ) that go through a common point (the origin ), and are pair-wise perpendicular; an orientation for each axis; and a single unit of length for all ...
A linear equation in line coordinates has the form al + bm + c = 0, where a, b and c are constants. Suppose (l, m) is a line that satisfies this equation.If c is not 0 then lx + my + 1 = 0, where x = a/c and y = b/c, so every line satisfying the original equation passes through the point (x, y).
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...
Chiasmus was particularly popular in the literature of the ancient world, including Hebrew, Greek, Latin and K'iche' Maya, [7] where it was used to articulate the balance of order within the text. Many long and complex chiasmi have been found in Shakespeare [ 8 ] and the Greek and Hebrew texts of the Bible . [ 9 ]
Consequently, a general curvilinear coordinate system has two sets of basis vectors for every point: {b 1, b 2, b 3} is the contravariant basis, and {b 1, b 2, b 3} is the covariant (a.k.a. reciprocal) basis. The covariant and contravariant basis vectors types have identical direction for orthogonal curvilinear coordinate systems, but as usual ...
The abscissa is then defined as the segment of the diameter between the ordinate and the vertex. Using his version of a coordinate system, Apollonius manages to develop in pictorial form the geometric equivalents of the equations for the conic sections, which raises the question of whether his coordinate system can be considered Cartesian.