enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Geometry. In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a pair of compasses. The idealized ruler, known as a straightedge, is assumed ...

  3. Constructible polygon - Wikipedia

    en.wikipedia.org/wiki/Constructible_polygon

    Constructible polygon. In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinitely many constructible polygons, but only 31 with an odd number of sides are ...

  4. Poncelet–Steiner theorem - Wikipedia

    en.wikipedia.org/wiki/Poncelet–Steiner_theorem

    To draw the parallel (h) to a diameter g through any given point P. Chose auxiliary point C anywhere on the straight line through B and P outside of BP. (Steiner) In the branch of mathematics known as Euclidean geometry, the Poncelet–Steiner theorem is one of several results concerning compass and straightedge constructions having additional restrictions imposed on the traditional rules.

  5. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    Constructive proof. In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem), which proves the existence of a particular ...

  6. Mathematics of paper folding - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_paper_folding

    In 1949, R C Yeates' book "Geometric Methods" described three allowed constructions corresponding to the first, second, and fifth of the Huzita–Hatori axioms. [6] [7] The Yoshizawa–Randlett system of instruction by diagram was introduced in 1961. [8] Crease pattern for a Miura fold. The parallelograms of this example have 84° and 96° angles.

  7. Constructible number - Wikipedia

    en.wikipedia.org/wiki/Constructible_number

    The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.

  8. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...

  9. Viennot's geometric construction - Wikipedia

    en.wikipedia.org/wiki/Viennot's_geometric...

    Viennot's geometric construction. In mathematics, Viennot's geometric construction (named after Xavier Gérard Viennot) gives a diagrammatic interpretation of the Robinson–Schensted correspondence in terms of shadow lines. It has a generalization to the Robinson–Schensted–Knuth correspondence, which is known as the matrix-ball construction .

  1. Related searches posttest geometric proof and constructions video youtube kids en la computadora

    constructive proof mathswhat is a constructive proof
    example of a constructive proofnon constructive proof examples