enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plotting algorithms for the Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Plotting_algorithms_for...

    From a mathematician's point of view, this formula only works in limit where n goes to infinity, but very reasonable estimates can be found with just a few additional iterations after the main loop exits. Once b is found, by the Koebe 1/4-theorem, we know that there is no point of the Mandelbrot set with distance from c smaller than b/4.

  3. Approximation error - Wikipedia

    en.wikipedia.org/wiki/Approximation_error

    Best rational approximants for π (green circle), e (blue diamond), ϕ (pink oblong), (√3)/2 (grey hexagon), 1/√2 (red octagon) and 1/√3 (orange triangle) calculated from their continued fraction expansions, plotted as slopes y/x with errors from their true values (black dashes)

  4. Diophantine approximation - Wikipedia

    en.wikipedia.org/wiki/Diophantine_approximation

    A best approximation for the second definition is also a best approximation for the first one, but the converse is not true in general. [4] The theory of continued fractions allows us to compute the best approximations of a real number: for the second definition, they are the convergents of its expression as a regular continued fraction.

  5. Five-point stencil - Wikipedia

    en.wikipedia.org/wiki/Five-point_stencil

    An illustration of the five-point stencil in one and two dimensions (top, and bottom, respectively). In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors".

  6. Padé approximant - Wikipedia

    en.wikipedia.org/wiki/Padé_approximant

    Since a Padé approximant is a rational function, an artificial singular point may occur as an approximation, but this can be avoided by Borel–Padé analysis. The reason the Padé approximant tends to be a better approximation than a truncating Taylor series is clear from the viewpoint of the multi-point summation method.

  7. Approximation algorithm - Wikipedia

    en.wikipedia.org/wiki/Approximation_algorithm

    A notable example of an approximation algorithm that provides both is the classic approximation algorithm of Lenstra, Shmoys and Tardos [2] for scheduling on unrelated parallel machines. The design and analysis of approximation algorithms crucially involves a mathematical proof certifying the quality of the returned solutions in the worst case. [1]

  8. Remez algorithm - Wikipedia

    en.wikipedia.org/wiki/Remez_algorithm

    The Remez algorithm or Remez exchange algorithm, published by Evgeny Yakovlevich Remez in 1934, is an iterative algorithm used to find simple approximations to functions, specifically, approximations by functions in a Chebyshev space that are the best in the uniform norm L ∞ sense. [1] It is sometimes referred to as Remes algorithm or Reme ...

  9. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...