enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The projection of a onto b is often written as ⁡ or a ∥b. The vector component or vector resolute of a perpendicular to b , sometimes also called the vector rejection of a from b (denoted oproj b ⁡ a {\displaystyle \operatorname {oproj} _{\mathbf {b} }\mathbf {a} } or a ⊥ b ), [ 1 ] is the orthogonal projection of a onto the plane (or ...

  3. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    general. In mathematics, injections, surjections, and bijections are classes of functions distinguished by the manner in which arguments (input expressions from the domain) and images (output expressions from the codomain) are related or mapped to each other. A function maps elements from its domain to elements in its codomain.

  4. Bijection - Wikipedia

    en.wikipedia.org/wiki/Bijection

    A bijection, bijective function, or one-to-one correspondence between two mathematical sets is a function such that each element of the second set (the codomain) is the image of exactly one element of the first set (the domain). Equivalently, a bijection is a relation between two sets such that each element of either set is paired with exactly ...

  5. Injective function - Wikipedia

    en.wikipedia.org/wiki/Injective_function

    t. e. In mathematics, an injective function (also known as injection, or one-to-one function[1] ) is a function f that maps distinct elements of its domain to distinct elements; that is, x1 ≠ x2 implies f(x1) ≠ f(x2) (equivalently by contraposition, f(x1) = f(x2) implies x1 = x2). In other words, every element of the function's codomain is ...

  6. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  7. Surjective function - Wikipedia

    en.wikipedia.org/wiki/Surjective_function

    The function f : R → R defined by f(x) = x 3 − 3x is surjective, because the pre-image of any real number y is the solution set of the cubic polynomial equation x 3 − 3x − y = 0, and every cubic polynomial with real coefficients has at least one real root. However, this function is not injective (and hence not bijective), since, for ...

  8. Linear map - Wikipedia

    en.wikipedia.org/wiki/Linear_map

    Linear map. In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.

  9. Tent map - Wikipedia

    en.wikipedia.org/wiki/Tent_map

    Tent map. Graph of tent map function. Example of iterating the initial condition x0 = 0.4 over the tent map with μ = 1.9. In mathematics, the tent map with parameter μ is the real -valued function fμ defined by. the name being due to the tent -like shape of the graph of fμ. For the values of the parameter μ within 0 and 2, fμ maps the ...