Search results
Results from the WOW.Com Content Network
Dimension. M L3 T−3 I−1. In electromagnetism, electric flux is the measure of the electric field through a given surface, [1] although an electric field in itself cannot flow. The electric field E can exert a force on an electric charge at any point in space. The electric field is the gradient of the potential.
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx /cm 2 or g / Bi /s 2, while the oersted is the unit of H -field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted. The units for magnetic flux Φ, which is the integral of magnetic B ...
Gauss's law. Foundational law of electromagnetism relating electric field and charge distributions. Gauss's law in its integral form is particularly useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of ...
v. t. e. In electromagnetism, permeability is the measure of magnetization produced in a material in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter μ. It is the ratio of the magnetic induction to the magnetizing field as a function of the field in a material.
Permittivity as a function of frequency can take on real or complex values. In SI units, permittivity is measured in farads per meter (F/m or A 2 ·s 4 ·kg −1 ·m −3). The displacement field D is measured in units of coulombs per square meter (C/m 2), while the electric field E is measured in volts per meter (V/m).
Since a gyromagnetic factor equal to 2 follows from Dirac's equation, it is a frequent misconception to think that a g-factor 2 is a consequence of relativity; it is not. The factor 2 can be obtained from the linearization of both the Schrödinger equation and the relativistic Klein–Gordon equation (which leads to Dirac's).