enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Counterexample - Wikipedia

    en.wikipedia.org/wiki/Counterexample

    A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. [1] For example, the fact that "student John Smith is not lazy" is a counterexample to the generalization "students are lazy", and both a counterexample to, and ...

  3. Weaire–Phelan structure - Wikipedia

    en.wikipedia.org/wiki/Weaire–Phelan_structure

    In geometry, the Weaire–Phelan structure is a three-dimensional structure representing an idealised foam of equal-sized bubbles, with two different shapes. In 1993, Denis Weaire and Robert Phelan found that this structure was a better solution of the Kelvin problem of tiling space by equal volume cells of minimum surface area than the previous best-known solution, the Kelvin structure.

  4. Retraction (topology) - Wikipedia

    en.wikipedia.org/wiki/Retraction_(topology)

    Retraction (topology) Continuous, position-preserving mapping from a topological space into a subspace. In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. [1] The subspace is then called a retract of the original space.

  5. Minimal counterexample - Wikipedia

    en.wikipedia.org/wiki/Minimal_counterexample

    In mathematics, a minimal counterexample is the smallest example which falsifies a claim, and a proof by minimal counterexample is a method of proof which combines the use of a minimal counterexample with the ideas of proof by induction and proof by contradiction. [1][2] More specifically, in trying to prove a proposition P, one first assumes ...

  6. Poincaré conjecture - Wikipedia

    en.wikipedia.org/wiki/Poincaré_conjecture

    e. In the mathematical field of geometric topology, the Poincaré conjecture (UK: / ˈpwæ̃kæreɪ /, [2] US: / ˌpwæ̃kɑːˈreɪ /, [3][4] French: [pwɛ̃kaʁe]) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. Originally conjectured by Henri Poincaré in ...

  7. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    Riemann hypothesis. This plot of Riemann's zeta (ζ) function (here with argument z) shows trivial zeros where ζ (z) = 0, a pole where ζ (z) = , the critical line of nontrivial zeros with Re (z) = 1/2 and slopes of absolute values. In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at ...

  8. Counterexamples in Topology - Wikipedia

    en.wikipedia.org/wiki/Counterexamples_in_Topology

    Counterexamples in Topology (1970, 2nd ed. 1978) is a book on mathematics by topologists Lynn Steen and J. Arthur Seebach, Jr. In the process of working on problems like the metrization problem, topologists (including Steen and Seebach) have defined a wide variety of topological properties. It is often useful in the study and understanding of ...

  9. Hyperplane separation theorem - Wikipedia

    en.wikipedia.org/wiki/Hyperplane_separation_theorem

    In geometry, the hyperplane separation theorem is a theorem about disjoint convex sets in n-dimensional Euclidean space.There are several rather similar versions. In one version of the theorem, if both these sets are closed and at least one of them is compact, then there is a hyperplane in between them and even two parallel hyperplanes in between them separated by a gap.